Tutorial 1 : SAT AND BDD

CS60030 Formal Systems

PALLAB DASGUPTA,
FNAE, FASc,
A K Singh Distinguished Professor in Al,
Dept of Computer Science \& Engineering Indian Institute of Technology Kharagpur
Email: pallab@cse.iftkgp.ac.in
Web: http://cse.iftkgp.ac.in/~pallab

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Circuit to CNF Representation

Characteristic function

туpe	Operation	CNF Sub-expression
	$C=A \cdot B$	$(\bar{A} \vee \bar{B} \vee C) \wedge(A \vee \bar{C}) \wedge(B \vee \bar{C})$
O- NAND	$C=\overline{A \cdot B}$	$(\bar{A} \vee \bar{B} \vee \bar{C}) \wedge(A \vee C) \wedge(B \vee C)$
	$C=A+B$	$(A \vee B \vee \bar{C}) \wedge(\bar{A} \vee C) \wedge(\bar{B} \vee C)$
	$C=\overline{A+B}$	$(A \vee B \vee C) \wedge(\bar{A} \vee \bar{C}) \wedge(\bar{B} \vee \bar{C})$
- NOT	$C=A$	$(\bar{A} \vee \bar{C}) \wedge(A \vee C)$
	$C=A \oplus B$	$(\bar{A} \vee \bar{B} \vee \bar{C}) \wedge(A \vee B \vee \bar{C}) \wedge(A \vee \bar{B} \vee C) \wedge(\bar{A} \vee B \vee C)$

AND Gate to CNF:

$$
\begin{aligned}
& C \Leftrightarrow A \wedge B \\
& \equiv(C \Rightarrow A \wedge B) \wedge(A \wedge B \Rightarrow \\
& \quad C) \\
& \equiv(\neg C \vee(A \wedge B)) \wedge(\neg(A \wedge B) \\
& \quad \vee C) \\
& \equiv(\neg C \vee A) \wedge(\neg C \vee B) \wedge \\
& \\
& (\neg A \vee \neg B \vee C)
\end{aligned}
$$

1. Equivalence Checking of Two Circuits Using SAT

- Transform the circuits into CNF.

- Are these two circuits equivalent?

x_{4}	x_{6}	x_{7}
0	0	0
0	1	1
1	0	1
1	1	0

Convert the Circuits to CNF

Type	Operation	CNF Sub-expression
	$C=A \cdot B$	$(\bar{A} \vee \bar{B} \vee C) \wedge(A \vee \bar{C}) \wedge(B \vee \bar{C})$
$\square 0-\text { NAND }$	$C=\overline{A \cdot B}$	$(\bar{A} \vee \bar{B} \vee \bar{C}) \wedge(A \vee C) \wedge(B \vee C)$
	$C=A+B$	$(A \vee B \vee \bar{C}) \wedge(\bar{A} \vee C) \wedge(\bar{B} \vee C)$
	$C=A+B$	$(A \vee B \vee C) \wedge(\bar{A} \vee \bar{C}) \wedge(\bar{B} \vee \bar{C})$
	$C=\bar{A}$	$(\bar{A} \vee \bar{C}) \wedge(A \vee C)$
	$C=A \oplus B$	$(\bar{A} \vee \bar{B} \vee \bar{C}) \wedge(A \vee B \vee \bar{C}) \wedge(A \vee \bar{B} \vee C) \wedge(\bar{A} \vee B \vee C)$

CNF Formulations of the Circuits

1. $X_{3} \Leftrightarrow \neg X_{2}$

$$
\left(X_{2} \vee X_{3}\right) \wedge\left(\neg X_{2} \vee \neg X_{3}\right)
$$

2. $X_{4} \Leftrightarrow X_{1} \vee X_{3}$

$$
\left(X_{1} \vee X_{3} \vee \neg X_{4}\right) \wedge\left(\neg X_{1} \vee X_{4}\right) \wedge\left(\neg X_{3} \vee X_{4}\right)
$$

3. $X_{5} \Leftrightarrow X_{1} \wedge X_{2}$

$$
\left(\neg X_{1} \vee \neg X_{2} \vee X_{5}\right) \wedge\left(X_{1} \vee \neg X_{5}\right) \wedge\left(X_{2} \vee \neg X_{4}\right)
$$

4. $X_{6} \Leftrightarrow \neg X_{5}$

$$
\left(X_{6} \vee X_{5}\right) \wedge\left(\neg X_{6} \vee \neg X_{5}\right)
$$

5. $X_{4} \oplus X_{6}$

$$
\left(X_{4} \vee X_{6}\right) \wedge\left(\neg X_{4} \vee \neg X_{6}\right)
$$

2. Solving a Sudoku Puzzle Using SAT

- Sudoku is combinatorial puzzle where a DXD board has the following constraints:

1. Each cell has an unique assignment of number from 0 to $\mathrm{D}-1$
2. No number in a row is repeated
3. No number in a column is repeated and (No number in a block is repeated)

- Model the following 2×2 - Sudoku ($\mathrm{D}=2$) as a SAT problem. Mention the variables and the clauses and find a satisfiable assignment. Can you similarly solve the 4X4 Sudoku (D=4) Puzzle?

Solving a Sudoku Puzzle Using SAT

Variables Clauses
 1) All cells must have assignment 0 or 1

$$
\left(\mathrm{X}_{000} \vee \mathrm{x}_{001}\right) \wedge\left(\mathrm{X}_{010} \vee \mathrm{X}_{011}\right) \wedge\left(\mathrm{X}_{100} \vee \mathrm{X}_{101}\right) \wedge\left(\mathrm{X}_{110} \vee \mathrm{X}_{111}\right)
$$

2) A cell can have at most one assignment 0 or 1

$$
\neg X_{111}\left(\neg X_{000} \vee \neg X_{001}\right) \wedge\left(\neg X_{010} \vee \neg X_{011}\right) \wedge\left(\neg X_{100} \vee \neg X_{101}\right) \wedge\left(\neg X_{110} \vee\right.
$$

3) No numbers on rows are repeated

$$
\begin{aligned}
& \quad\left(\neg X_{000} \vee \neg X_{010}\right) \wedge\left(\neg X_{001} \vee \neg X_{011}\right) \wedge\left(\neg X_{100} \vee \neg X_{110}\right) \wedge\left(\neg X_{101} \vee\right. \\
& \left.\neg X_{111}\right) \\
& \text { 4) No numbers on columns are repeated }
\end{aligned}
$$

Gate Level Circuit to BDDs

- Each input of the circuit is a BDD.
- Each gate becomes an operator that produces a new BDD.
- Example:

BDD for f

ROBDD - 1

Draw ROBDD for the following function
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\bar{a} \boldsymbol{b}+\bar{b} \boldsymbol{c}+\boldsymbol{b} \bar{c}$

ROBDD - 2

Draw the ROBDD for f using the ordering $a>b>c>d$, for the circuit given below.

ROBDD - 3

Verify if the two circuits are equivalent or not using ROBDD

Graph Colouring to SAT Formulation

We are given a graph $G=(V, E)$
A colouring of the n vertices of the graph with k colours is a mapping; $\mathrm{f}: \mathrm{V}-\mathrm{-}>\{1, \ldots, k\}$

- $f(v)$ denotes the color of vertex v

A coloring is a proper colouring, if, adjacent vertices must receive different colours.
Write a SAT formulation for proper colouring.

Solution

1. Each vertex must be coloured

2. Each vertex should have only one colour
3. Neighboring vertices should not have same colour

Practice Problems : Graph Coloring : SAT Formulation

We are given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
A coloring of the n vertices of the graph with k colors is a map; $f: V i\{1, . ., k\}$

- $f(v)$ denotes the color of vertex v

A coloring is a proper coloring, if, adjacent vertices must receive different colors.

PROBLEM

- To find the minimum k such that
a proper k-coloring of G is possible

In how many ways can we color the n vertices with k colors?
Each vertex may receive one of the k colors

Number of colorings (not necessarily proper colorings) $=k^{n}$

Graph Colouring

Types of Constraints:

1. Vertex Constraints: A vertex must get exactly one color.
2. Edge Constraints: No two adjacent vertices should be colored with the same color

Boolean State Encoding:

- Each color is given a number "i" - assume N colors
- Each vertex is given a number "j"
- For "k" colors, each vertex has "i" Boolean variables. Vertex "j" has variables numbered as $\left[(j-1)^{*} \mathrm{~N}+\mathrm{i}\right]$: For $\mathrm{N}=3$ colors, Vertex V_{3} is represented as the three Boolean variables x_{7}, x_{8} and x_{9} respectively representing that the vertex V_{3} is colored by colors " 1 ", " 2 " or " 3 ".

Graph Colouring

Vertex Constraints:

For Vertex V_{1} :
Assign it a color: $\left(\mathrm{x}_{1} \square \mathrm{x}_{2} \square \mathrm{x}_{3}\right)$
Exactly one color: : $\left(\neg x_{1} \square \square x_{2}\right) \wedge\left(\neg x_{1} \square \neg x_{3}\right)\left(\neg x_{2} \square \neg x_{3}\right)$

Edge Constraints:

$$
\begin{array}{r}
\text { For Vertex } \mathrm{V}_{1} \text { (edge } e_{1} \\
\text { Color } 1:\left(7 x_{1} \square \neg x_{4}\right) \\
\text { Color } 2:\left(7 x_{2} \square x_{5}\right) \\
\text { Color } 3:\left(7 x_{3} \square \square x_{6}\right)
\end{array}
$$

What about with two colors?

Frequency Allocation

In mobile telephony, the frequency allocation problem is stated as follows. There are a number of transmitters deployed and each of them can transmit on any of a given set of frequencies. Different transmitters have different frequency sets. Some transmitters are so close that they cannot transmit at the same frequency, because then they would interfere with each other. You are given the frequency range of each transmitter and the pairs of transmitters that can interfere if they use the same frequency. The problem is to determine if there is any possible choice of frequencies so that no transmitter interferes with any other.

Minimum Vertex Cover

A vertex cover of a graph G is a set S of vertices such that S contains at least one endpoint of every edge of \mathbf{G}.

PROBLEM: To find the minimum size vertex cover

Airline Operation

An airline company operates flights between various small (Class C/D/E) and large airports (Class B - like Chicago ORD). It wants to identify the least number of airport hubs from which it needs to operate its large aircrafts like the Boeing 747/777/787 or A-380/A-350. Come up with a SAT formulation that can help them.

- You want the minimum number of airport hubs to operate from, so that all small airports are covered.
-We discriminate between airports (some cannot act as hubs) - Large aircrafts cannot land at all airports.
- By minimizing these hubs, the aircraft saves on operating costs.

Perfect Matching

Matching: A choice of edges, every vertex has at most one edge of the matching incident on it.

Perfect Matching: A matching that covers all vertices

NOT a Matching
(1)

A Matching
(2)

Perfect Matching (3)

Perfect Matching (4)

Scheduling a Conference

Scheduling Speakers at a conference. There are \mathbf{N} speakers and \mathbf{N} time slots planned for a conference. Every speaker has a set of time slots in which there are available/unavailable. You wish to check if there is a way to assign a speaker to a preferred time slot, such that every speaker is able to speak at the conference.

